Final Milestone
Final Milestone
Second Milestone
First Milestone
For my first milestone, I dismantled two DVD drives, took the stepper rails out of them, soldered wires onto their stepper motors, and attached those wires to a L293D motor shield on top of an Arduino Uno The stepper rails are responsible for all the moving parts of the CNC plotter, and hold the paper and pen for drawing. The Arduino Uno connects to a computer and runs code so that the stepper motor can move the paper/pen. The L293D motor shield is inserted into the Arduino Uno, and it is where the wires from the stepper rails are screwed in. A USB breakout board is used to supply power to the whole thing.
I ran into a few difficulties while achieving this milestone, mainly involving soldering. Soldering the wires onto the stepper motors was an essential step that I couldn’t mess up. Four wires had to be soldered onto four very small contact points on the stepper motor. If the contact points touched each other, the system would short circuit and not work, and I would likely have to replace it with another one. Some very precise soldering was required to make this work. With an instructor’s help, I managed to solder the wires onto the first one, although I did mess up a few times and my instructor had to step in and fix things. After learning from this experience, soldering wires onto the second stepper rail was much easier, and went much smoother. Another difficulty I encountered was trying to find code to test that the stepper motors worked. After much googling and searching, I managed to find this link which provided a library that had test code in it for stepper motors. I ran it and to my surprise, everything worked the first time.
My next milestone will be finishing all the physical construction required for this project, which is mounting both stepper rails to wood and adding a paper surface and pen to them. I’m also thinking about screwing the Arduino Uno/L293D motor shield combo onto the wood so it doesn’t float around.
Starter Project
For my starter project, I chose to do the MintyBoost battery charger. It supplies power from two 1.5V double A batteries contained in a battery holder to the USB port on the circuit board and the connected device. The majority of the components on the circuit board, like the boost converter chip, IC socket, ceramic capacitors, electrolytic capacitors, power inductor, and 3.3K resistor are used to transfer power from the batteries to the connected device. The rest of the components, which include the 75K 1% and 49.9K 1% resistors and diode, are used for less important tasks, like figuring out what type of charger is connected.
Overall, this project was a good way to practice my newly acquired soldering skills for my main project, learning how to properly document my work, and acclimating to the BlueStamp environment. I definitely learned a lot that will be useful for my main project.
The Building Process
Instructions for building the MintyBoost can be found here.
I did run into a few problems while working on this project. The 75K 1% resistors that went into the R2 and R4 spot on the circuit board would not go in all the way, due to their wire ends being too long. I attempted to bend the ends even more so that it would fit, but to no avail. I ended up just jamming them in there and praying that it would work. Luckily, it did. The resistors were elevated a bit off the circuit board, but that turned out to be helpful, as the 49.9K 1% resistors that went in the adjacent spots fit easier because there was more room closer to the circuit board. Another problem I encountered was when I soldered in the USB port. I accidentally left the batteries in while I was soldering, so the batteries and the circuit board got very hot. It’s a miracle that nothing exploded.
“It’s a miracle nothing exploded.”
I let the whole thing cool for a bit before swapping out the batteries for new ones and testing it.